NAVAL POSTGRADUATE SCHOOL
Monterey, California

IMPLEMENTATION OF THE SNR HIGH-SPEED
TRANSPORT PROTOCOL (THE TRANSMITTER PART)

by
Farah Mezhoud

March 1995

Thesis Advisor: Gilbert M. Lundy

Approved for public release; distribution is unlimited.

19950510 032

Form Approved

REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time reviewing instructions, searching existing data sources
gathering and maintaining the data needed. and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information. including suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

———— e e T Y ——
1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
March 1995 Master’s Thesis
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Implementation of the SNR High-Speed Transport Protocol (the
Transmitter Part)

6. AUTHOR(S)
Mezhoud, Farah

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Naval Postgraduate School REPORT NUMBER

Monterey, CA 93943-5000

#
9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/ MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES]] . o
The views expressed in this thesis are those of the author and do not reflect the official policy or position

of the Department of Defense or the United States Government.

T ———— I ——— Ty T 7= -
12a. DISTRIBUTION / AVAILABILITY STATEMENT . . . L. 12b. DISTRIBUTION CODE
Approved for public release; distribution is unlimited.

13, ABSTRACT (Maximum 200 words) . . .
The major problem addressed by this research is how to implement a transport protocol invented especially for high speed

networking using the current workstations, so that the high throughput promised by the protocol will be achieved. The
approach taken was to implement the SNR protocol, a transport protocol for high speed networking, named after its inventors,
and composed of eight different machines (four transmitter and four receiver), using three Unix workstations connected with
FDDI, allowing a throughput up to 100 Mbps. v

This thesis is the implementation of the transmitter part of the protocol; the receiver part is done in parallel in a separate thesis.
The four transmitter machines are implemented as four different Unix processes working in parallel and communicate through
shared memory which provides the fastest means of exchanging information between processes. The protocol is implemented
on top of the Internet Protocol layer using the "raw socket" as interface to access the IP facilities. The C programming language
was used for the software implementation in order to access efficiently to the Unix system calls and thus reduce the overhead
of the operating system.

This thesis shows that these new protocols can be successfully implemented using the current workstations and we expect that
in a multiprocessor environment, where each machine is dedicated to a different processor, we will have even better
performance.

14.SUBJECT TERMS]] 15. NUMBER OF PAGES
SNR, protocol, implementation, high-speed, shared memory, raw socket 78
(76, PRICE CODE
e — e T Tt T
17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
Unclassified Unclassified Unclassified Unlimited
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

i Prescribed by ANSI Std. 239-18

Approved for public release; distribution is unlimited
IMPLEMENTATION OF THE SNR HIGH-SPEED TRANSPORT PROTOCOL
(THE TRANSMITTER PART)
by
Farah Mezhoud

Major, Tunisian Army
Electronic Engineer, ESEAT France, 1985

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE
from the
NAVAL POSTGRADUATE SCHOOL

March 1995

Author: N . (Eg' /

Farah Mezhoud

Gilbert M. Lundy, Thgsi Advisor

S

\4
Ted Lewis, Chairman,
Department of Computer Science

il

v

ABSTRACT

The major problem addressed by this research is how to implement a transport
protocol invented especially for high speed networking using the current workstations, so
that the high throughput promised by the protocol will be achieved.

The approach taken was to implement the SNR protocol, a transport protocol for
high speed networking, named after its inventors, and composed of eight different
machines (four transmitter and four receiver), using three Unix workstations connected
with FDDI, allowing a throughput up to 100 Mbps.

This thesis is the implementation of the transmitter part of the protocol; the receiver
part is done in parallel in a separate thesis. The four transmitter machines are implemented
as four different Unix processes working in parallel and communicate through shared
memory which provides the fastest means of exchanging information between processes.
The protocol is implemented on top of the Internet Protocol (IP) layer using the “raw
socket” as interface to access the IP facilities.

The C programming language was used for the software implementation in order
to access efficiently to the Unix system calls and thus reduce the overhead of the operating
system.

This thesis shows that these new protocols can be successfully implemented using
the current workstations and we expect that in a multiprocessor environment, where each

machine is dedicated to a different processor, we will have even better performance.

Accesion For

NTIS CRA&] N
DTIC TAB]
Unannounced 0

Justification

et e e,

By
Distribution |

Availability Codes

. Avail and|or
Dist Special

Y

vi

TABLE OF CONTENTS

L. INTRODUCTTION ..ottt eeeteeeeeeeetasee s e aesseaes seeeaessaesssssseesrsssessssesssnasases 1
A. BACKGROUND ..oooteeiioeeetieeiiiieeeeeiereseseereaeessssaas e ssiussesssssnasnssrersnsssesesssess 1

B. OBJECTIVES ..o e 3

C. ORGANIZATION OF THE THESIS ..ottt 3

II. SNR PROTOQCOL .ooeeeeeeeeeeeeeeeeeie et ee st et tesesteesesaessasas s saas e saasseerasassssnassnnns 5
A. INTRODUCTTION ...ttt eectieeeetre et eeeieceiiteestaeessasn e ssnaesas e seas e asssneanas 5

1. Problems with Existing ProtoColscccccoviiiiiiiniinniiniiiciienie e 5

2. Introduction to the SNR Protocolcoovevveevieiieieeeneeieiiininiiiieee s 6

B. DESIGN AND ORGANIZATIONooooiiieeiieenireeniieceineeesniecssnnressnesesnsee e 7

C. PROTOCOL SPECIFICATION.....ccoiiiiiiieeeteeeee e civae st 9

1. TTANSIMILET PrOCESSES .. e nviieiiiieieeeieeeeiiivreneteeeeeseeecneentressreesessessesnnrnnnaes 9

2. RECEIVET PTOCESSES ..cvvvveeieenrirreeeerieeeeeseneeeesesisntecesntassesssinriesssesannesasns 14

II. IMPLEMENTATION OF THE TRANSMITTERcccccoiiiiiiiiiniieniiireee e 19
A. GENERAL APPROAGCHoooi oottt eeeteeeesttte e steees s sastseessssasse s snnns 19

1. TNTOAUCTION . cnneeeeeeeeiiteeeeeeeereeeeserraaeeeeesaeaessensmteesssnneeesesnmensessssansanseenns 19

2. THE RAW SOCKEL cveveviiiiiiiiiiiireireitetirernreeneasiissssassnenesosasasesssssessasanssssssnes 20

3. Shared MEMOTY ...c.ceoueeiireerieeeietcninicnie ettt ene 21

4. Timing MeChaniSm ... s 22

5. USING SIZNALS .veeieviiiemeeeiciiiiiici et 23

B. TRANSMITTER MACHINESooi ettt neas 23

L. Time DePendencyc.couiiuiimiriniineniee ettt et 23

2. Critical Sections and Synchronizationcccveeieniieniiniiiniennennienees 24

3. SNR Packets FOrMatS......ccooovvviieiieiieieeeeeeeccirereeeeceveveireeeeeeseneessasannnnrnnaes 26

4, DaAta SITUCLUTE ..vvvvvveieeivieeeeeernrreceerssneaeeesatteesensnnnesssssssseesssssnsnsssssinreenans 32

5. Functions used by Transmitter Machinescccocvveeineniinennnennnenn 35

C. MACHINE IMPLEMENTATIONS. ...ttt sanae e 44

1. T2 SIAVE PIOCESS wuvvviieieenrreeieeiieteereerieeeenseeeeeeessvteessssnsnecssssrsnnsssssssasns 44

2. PIOCESS Tl oottt eree st aeseseeste et st s s eese s e snsssasassrannssasanes 46

3. PLOCESS T2 oeeeeeeeeeeeeeeeeeeeeevesreeeesessrsassesssssesnassnasassseaeesenssrssessssnnssessarns 49

4. PTOCESS T3 eeeeeeeeeee ettt e et e ee e esstbebeaeessssesnssenreneeeaessossssnsrrrrranass 54

5. PLOCESS T oottt eeceirreeeeeetitaesessresaeesesseae e sessbasssosrnsnnnssssnresssesnns 57

IV. CONCLUSIONS AND RECOMMENDATIONS.......ccooctriiiiniieiiiriniie i 61
LIST OF REFERENCES ..ottt steeeitiesinee st teeseesssasesssaassnnsssessasssensesnssssansnes 65
INITIAL DISTRIBUTION LIST ...eeooiiieeeeeieeeieeeeteeeireeeieeesevneessenesssnnesesanssessssssssnesanns 67

vit

viii

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:
Figure 21:
Figure 22:
Figure 23:
Figure 24:

LIST OF FIGURES

OST ProtoCO] SEACKiiiuiieieeeiie ettt ettt et et saba e 2
Network, Hosts, Entities and Protocol Processors......o.ocvvveeeiiiiinniiicnninnns 7
Machine Organization Including the Shared Variables.................cccccceeee. 10
T1 State Diagram and Predicate-Action Table ..o 11
T2 State Diagram and Predicate-Action Table..........cocoooeeniinn 12
T3 State Diagram and Predicate-Action Table ... 13
T4 State Diagram and Predicate-Action Table.........c..ocovniiiiini 14
R1 State Diagram and Predicate-Action Table.........coocoovininiinininss 15
R2 State Diagram and Predicate-Action Table...........cooevviiniinnn 16
R3 State Diagram and Predicate-Action Table.........ccocooiinniiincnns, 16
R4 State Diagram and Predicate-Action Table.........c.occooeininiininnnnnn 17
Timing DePendencycucceiiiiriiiiiniiiiie s 25
SNR Header Definition.......c.ecvereeeierienernieestinienieiieeiecireeriesseessssesssseeanes 28
C Definition of the Receiver Control Packet (type0)........coccvevvieniviinnennne 28
C Definition of the Transmitter Control Packet...........cccoevvviiniininninnnnn 29
C Definition of the Data PaCKet........ccccovuiiiiiniiiniiinieiiieiiesiie e 30
C Definition of Connection Request Packet.............cooooeiiniinniiniinnnnne. 31
Data Structure of the Global Variables in Shared Memory.............c....c.... 32
OUTBUF Ring Buffer SHucture.ccvoieiiiiiiiniieeieeeenecienceccieeens 33
FLAG SETUCIUTE ..evveivienreeteeeeeceeeeereesnessisssesssesnsesseerseesneessesssasasssssssensessne 34
LUP SHTUCKHUTE «..coveevveeeeeeveeteeeeeeenveeireseaesteessestcssesssssnseennesssessaassssssssnassesnns 34
Structure of Shared Memory between T2 and T2_slavec.ccoveneeeee 34
R_CHANNEL SHUCIUTEveevveviieenieeeneieeresiiisiecsnresnssessseennesssessssesssessses 35
ROH SHUCKUTE.....c.vveiteeereeeriesieeeneeesieestaesiecsstssssnesaaesessaeesbesssesssessasesssesnsees 35

ix

I. INTRODUCTION

A. BACKGROUND

Transmitting data at higher speeds has been the focus of many researchers for
several years. As fiber optics is becoming more and more the media of choice to
interconnect different types of computers, allowing the transmission of gigabits of
information per second, network researchers and designers place more strain on the
performance processing to match the data rates of fiber optic networks.

Fiber optics offers higher data transmission rates and lower error rates than copper
wire, which justifies the need of change in design philosophy. New high speed protocols
emphasize streamlining the normal data transmission processing for maximum throughput
[Ref.19] and thus, increasing channel utilization in the presence of high speed, long latency
networks. |

The International Standards Organization (ISO) proposed a model for networks
which has evolved into the ISO Open Systems Interconnection (OSI) [Ref. 20]. This model
provides a definition of what each of seven network layers should be able to do. The
relationship between these OSI seven layers is shown in Figure 1.

The transport protocol is considered by many network people as the keystone of the
whole concept of a computer communications architecture [Ref. 18]. It provides the basic
end-to-end service of transferring data between hosts. Any process or application can be
programmed to access directly the transport services without going through session and
presentation layers. Consequently, transport layer can be a source of processing overhead
and may be responsible for the low throughput of the whole system since it has several
critical functions related to data transfer [Ref. 3]. This includes detecting and correcting
errors in received packets, usually through retransmission, providing a flow control
mechanism for the system and delivering packets in order to the higher layers.

The performance of existing transport protocols is limited not only by the processor

speed and memory access times but also by the processing overhead in the operating

Application

Presentation

Session

Transport

Network

Data Link

Physical

Figure 1: OSI Protocol Stack

system. The author in [Ref.18] suggested two approaches to overcome the difficulties
encountered in transport protocols that led to low performance in presence of high speed
networks.

The first approach is to adapt the conventional transport protocol to the new
internetworking technology by improving its implementation. Research that has been done
in this area show that the ability to provide high bandwidth to high speed network users
depends heavily on protocol implementation [Ref.19]. The idea here is to take advantage
of the long experience gained with the existing protocols and thus avoid certain
implementation problems believed to be the cause of their slowness. Some of these
problems are the transfer of data from the user, timer management, buffer management,
connection state management, inter-process communication and scheduling.

The second approach is to invent new protocols devoted to be used in presence of
high speed network.These new protocols, called lightweight transport protocols, are
designed to offer higher throughput. Example of these protocols are VMTP (Vertasile
Message Transaction Protocol), NETBLT (Network Bulk Transfer), XTP (Express
Transfer Protocol) and SNR, named after its inventors (Sabnani, Netravali and Roome)

from AT&T bell laboratories.

In order to provide the high throughput, VMTP uses selective retransmission for
error recovery, groups packets into blocks and transmits large groups of packets in a burst
as fast as the network allows, rather than using rate control. This method is found to be
more efficient in processing cost [Ref. 3]. NETBLT also groups packets into blocks, uses
a rate control scheme (packet per second) based on the network congestion and selective
retransmission is used for error recovery. XTP on the other hand is designed to be
implemented in hardware and it combines the transport layer with the network layer. Flow
control is achieved through the use of parameters which provide visibility of the receiver’s
buffer to the transmitter. It also uses rate control and the selective repeat method for error

recovery.

B. OBJECTIVES

In the Naval Postgraduate School, more and more attention has been given to these
new protocols. In particular, Lundy and Tipici conducted research in 1993 on the SNR
protocol [Ref. 3]. They used a System of Communicating Machines (SCM) to analyze the
protocol and verify that it is free from logical errors. In their conclusion they posed the
question whether this protocol efficient enough to provide the high throughput which is
expected from the lightweight transport protocols.

This thesis is a continuing work on this transport protocol and an attempt to answer
this question by implementing the transmitter part on the current workstations and
performing realistic performance tests. The implementation of the SNR receiver is being
conducted in parallel in a separate thesis by W. J. Wan [Ref. 22]. Our major goal in this
work is to optimize the implementation in order to reduce the processing overhead and thus
achieve the high throughput, promised by this protocol. A third research is conducted in

parallel by R. Grier [Ref. 23] to test and verify our SNR implementation.

C. ORGANIZATION OF THE THESIS
In this implementation we follow very closely the specification introduced in [Ref.

3]. In order to make this thesis independently readable, the state diagram and the Predicate

Action Table of each of the SNR machines are reproduced in this thesis. Some corrections
and implementation details are added to the protocol and will be pointed out as necessary.

The thesis is organized into four chapters. Chapter II discusses the problems with
existing protocols and introduces the specification of the SNR protocol (transmitter and
receiver), including the state diagram and Predicate Action Table of each machine. Chapter
[II discusses the approach taken to implement the transmitter part, the algorithm of each
transmitter machine is given. Finally we conclude in Chapter IV, along with some

recommendations and future work that can be done as continuation on the same subject.

II. SNR PROTOCOL

A. INTRODUCTION

1. Problems with Existing Protocols

In this section we will discuss briefly some of the problems that are considered to
be the most important cause of the under utilization of the full potential offered by the fiber
optic technology and therefore must be avoided when designing lightweight protocols.

Existing protocols were designed when the processing speed of the CPU’s was
higher than the bit rates provided by the media and for that reason, one of the important
consideration of their design was not to saturate the transmission media with high data
rates. Today, with the introduction of fiber optic technology, the problem is reversed and
the bottleneck has moved to the communications processing part of the system.

Protocols must be interfaced with the host operating system, a required support to
move data from one host to another (interrupts, I/O devices, buffers...). Some suggestions

are made [Ref. 21] to get the best support from the operating system:
. Parallel processing of independent functions of the protocol,

. Avoiding the movement of data in memory, since this is the most costly operation
in packet processing,

. Making minimal use of operating system timer package.

The overhead of managing timers can sometimes be a burden.Timers are used to
recover from channel losses. In a positive acknowledgment scheme, there must be a timer
associated with every packet. A timer must be set, monitored, cleared and reset every time
a packet is sent or received.

Another problem associated with timers is the values that this timers must be set to,
which they depend on the round trip delay (RTD). Often the RTD can not be predicted with

accuracy since it varies with the condition of the networks.

When slow underlying conventional networks were used, the major issue was not
to overflow channels and for that reason, variable size packets, that are just large enough
to fulfill the need, were used, increasing the processing time at the receiver due to decoding
operations. This was not a problem since the bit rates in the network was slow anyway. But
with high speed networks, trying to minimize the packet size is just a wasted effort and for
this reason standard packet format are used.

The Go-Back-N method for error recovery is another defect of current protocols.
Whenever the receiver detects a loss of a packet, it sends a negative acknowledgment
message (NAK) to the transmitter, requiring retransmission of all the packets after the last
correctly received one. If the data rates are high or the retransmission channel is long, this
method may require many good packets to be retransmitted, causing significant loss of
throughput.

A conservative flow control scheme which uses the sliding window technique may
limit the throughput of the protocol in long-delay situations [Ref. 18]. This is because the
sliding window does not decuple acknowledgments from flow control. In the transmitter
side, the window size is increased only by acknowledgments from the receiver. On the
other hand, if the first packet of a given window gets lost, the receiver can not acknowledge
any of the rest of the packets and has to wait for the lost packet to be recovered. At the same
time, we can have a situation where the transmitter also has to wait for its window to be
increased.Therefore, both transmitter and receiver are waiting for the retransmitter timer to

expire. A better solution is to separate this two functions.

2. Introduction to the SNR Protocol

The SNR protocol was first introduced in [Ref. 12], then in [Ref. 2] a formal
specification was given using the System of Communicating Machines (SCM) model, and
finally in [Ref. 3] a further study was given on the protocol to refine and improve the SCM
specification by applying the associated system analysis. More details about the protocol

can be found in [Ref. 3] from which graphs and tables are reproduced in this chapter.

The SNR protocol requires a full duplex link between two host computers

connected across a high speed network as shown in Figure 2.

Host Host
Entities Entities
— Protocol oo e [—

Processor el & 1
r Processor \

Figure 2: Network,Hosts,Entities and Protocol Processors

Each host system in the network consists of eight finite state machines (FSM), four
for the transmitter and four for the receiver. Each machine in the protocol has a specific

function in coordination with the other machines

B. DESIGN AND ORGANIZATION
" To overcome the difficulties of the current transport protocols, discussed earlier in

this chapter, some design principles are followed when designing the SNR protocol in order
to simplify the protocol and reduce the processing overhead of the operating system.

Unlike most current protocols where status messages are exchanged only when
certain events occur, in the SNR protocol full state information is exchanged between
transmitter and receiver on a regular basis and therefore, the generation of
acknowledgments is totally decoupled from the data traffic. Although this technique
increases the number of packets transmitted, which is negligible compared to the very high
bandwidth of the fiber and the speed up it provides in processing, it has the advantage of
simplifying the protocol and allowing parallel protocol processing which leads to higher
performance.

In order to avoid wasting the network resources caused by the retransmission of

thousands of good packets when using the Go-Back-N error recovery method, the SNR

protocol uses selective repeat method of retransmission, and the concept of blocking.
Blocking reduces the overhead of maintaining large tables and complex procedures that are
required for the selective repeat method. A group of packets (typically 8) is called a block.
Packets within the block are transmitted and treated separately by the network. Upon
successful reception of all of the packets in a block, the receiver acknowledges the block,
rather than the individual packets. If a packet in a block gets lost, then the whole block of
packets is retransmitted. Despite the retransmission of some good packets in the block, this
method is used in order to simplify the protocol and thus gain in processing speed knowing
that fiber-optic media supporting the protocol has very low error rates.

A very important idea used in designing the SNR protocol that contributes
significantly to the improvement of the performance, is the concurrent execution of several
independent functions of the protocol. The four machines on each side (transmitter and
receiver) execute in parallel with small interaction between them.

Flexibility is another key of the SNR protocol and it is illustrated by specifying
three modes of operation:

Mode 0 is the simplest mode and has no error control or flow control. It is suited for
virtual circuit networks and for the cases where quick interaction between the
communicating entities is desired and short packets are used.

Mode 1 has no error control but provides flow control. It is suitable for real time
applications where error control is not needed and packet sizes are small.

Mode 2 has both error control and flow control. It is useful for large file transfers
in all types of network services.

The way flow control is done in SNR protocol is as follows:

The receiver writes the available buffer space it has in units of blocks into the
buffer-available field of the receiver control packets, and the transmitter maintains the
variables L, the maximum window size in units of blocks which will be chosen slightly
larger than (RTD * maximum bandwidth)/number of bits in a block, and NOU, the number

of outstanding blocks which have been transmitted but not yet acknowledged. Every time

the transmitter completes the transmission of a block of packets, it increments NOU, and
every time it receives a receiver control packet it decrements NOU by the number of
acknowledged blocks. It starts the transmission of another new block only if NOU is less

than L and buffer-available is greater than NOU.

C. PROTOCOL SPECIFICATION
The general organization of the eight machines, including global variables through
 which machines communicate, is shown in Figure 3. Details of implementing the

transmitter part will be left to the next chapter.
1. Transmitter Processes

a. Process T1

Transmission of new data packets and retransmission of unacknowledged
packets is done by machine T1. The state diagram and the Predicate Action Table of T1 are
shown in Figure 4.

Machine T1 starts executing its functions when the global variable T_active
is set to TRUE by machine T2 upon successful connection establishment. In mode 0, T1
transmits data as long as T_active remains TRUE and there is data in the buffer OUTBUF.
Every time the transmission of a block is completed, it increments the variable UWt
(transmitter upper window).

In mode 1 and in order to provide the flow control, a new block is
transmitted only if the receiver has space in its buffer and the maximum window size has
not been exceeded. The block is transmitted if NOU < L and buffer_available - NOU > 0.
NOU is incremented every time a complete block is transmitted. It is decremented by
machine T2 by the number of acknowledged blocks read from the receiver state
information packet.

In mode 2 if the “count” field of any block in the LUP table becomes 0, then

T1 stops transmitting new packets and retransmits all packets in the expired block, count is

reinitialized to O when the whole block is retransmitted. The variables UWt and NOU are

incremented and a new entry in LUP table is made every time the transmission of a new

block is completed.

OUTBUF INBUF
T1 head

ielrans (Send new blocks T_CHAN Rl

mmillls and retransmit (Receive -

I old blocks) data packets)
T4 T_CHAN CRZ R4
(Connect; (Connect;)
(Host interface) process incoming process incoming (Host interface)
control packets) R_CHAN control packets)
Transmit
R_active

Accept

Fail received
T_active T3 R3 Dlsconnoct-

sent (Send transmitter (Send receiver Buffer_avail
Disconnect control packets) control packets) scount

LW,

scount

NOU Uw;

buffer

LUP table RECEIVE
Seq] count[Ack HEENEEREEN

AREC

Figure 3: Machine Organization Including the Shared Variables

b. Process T2

Process T2 has to establish the connection, receive and process the receiver

control packets and finally terminate the connection. State diagram and Predicate Action

Table are shown in Figure 5.

Process T2 begins when the global Transmit is set to TRUE by T4. It then

sends a “conn_req” packet with negotiated parameters and receives the answer “conn_ack”

10

packet with the same parameters set by the receiver, and if they agree on these parameters,

it sends a “con_conf” packet to the receiver to confirm the connection and sets the global

variable T_active to TRUE, allowing the other transmitter machines to begin executing in

finish @ Transition Predicate Action
start T_active=T null
start| transmig finish T active=F null
\/\:Vl retransmit [T_active=T A Packet.seq:=(Expired(LUP)-1)*block_size+
retransmit 1 mode= 2 N Expired(LUP) /=0 retrans_count;

A A Packet.data:=OUTBUF(Packet.seq mod
blk_ OUTBUF’length);
completed Enqueue(Packet, T_CHAN);

\ sent:="T;
inc (retrans_count);
<2 if retrans_count > block_size then
no_flow
retrans_count:=1;
flow chk LUP((Expired(LUP)-1) mod L+1).count:=
- initial value;
end if;
fo. e / 3\ err chk transmit_ | T _active=T A retrans_count := 1;
u blk not (Empty(OUTBUF)) A Packet.seq:=UW, * block_size +
trans_count <= blk_size * trans_count;
(mode=0 v (NOU <L~ Dequeue(Packet.data, OUTBUF);
buffer - NOU>0)* Enqueue(Packet,T_CHAN);
(mode=1 v Expired(LUP)=0))){ sent:=T:
inc (trans_count);
blk_ trans_count > blk_size trans_count :=1;
completed inc (UW,);
no_flow mode =0 nuil
flow_chk [mode=1vmode=2 inc (NOU);
no_err mode = 1 null
err_chk mode =2 Insert (UW,, LUP);

Figure 4: T1 State Diagram and Predicate-Action Table

parallel. The connection is terminated by sending a “disc” packet when the global
variable Transmit is set to FALSE by T4. During data transfer, T2 receives the receiver

control packets and depending on the mode of operation, the following actions are taken:

« Scount is reset to 0 (more explanation of the use of this variable in T3)

« NOU is incremented by the number of acknowledged blocks (mode 1 and

mode 2)

11

« LWr is copied into LWt, LOB bit field is copied into HOLD, and buffer-
available field of the receiver control packet is copied into buffer-available (mode 1 and 2)
« Acknowledged packets are removed from OUTBUF and from LUP table

. count field in LUP table of the unacknowledged blocks are decremented

by the number of the received k.

Transition Predicate Action
request Transmit:? A Accept=T A Fail=F Enqueue (Conn_Req, T_CHAN);
accept R_CHAN(front) = Conn_Ack " T_active :=T,
Acceptable (R_CHAN(front)) Enqueue (Conn_Conf, T_CHAN);
Dequeue (R_CHAN);
unaccept |R_CHAN(front) = Conn_Ack * Accept:=F;
not (Acceptable (R_CHAN(front))) Dequeue (R_CHAN);,
clock Empty (R_CHAN) /A clock_tick nc (delay);
ok delay < reset null
timeout delay = reset inc (attempts); delay:=0;
retry attempts < max_attempts Enqueue (Conn_Req, T_CHAN)
quit attempts = max_attempts Fall :=T
finish Transmit = F A Empty (OUTBUF) A T _active:=F;
Disconnect=F A Enqueue (Disc, T_CHAN);
((mode =2 » Empty (LUP)) v
mode = 1 v mode = 0)
abort Disconnect=T T _active:=F, Transmit:=F;
rev_state [not (Empty (R_CHAN)) A Disconnect=F|null
discard R_CHAN(front).seq <= high v Dequeue(R_CHAN);
R_CHAN(front)=Conn_Ack
update R_CHAN(front).seq > lugh scount:=0; high:=R_CHAN(front).seq;
no_tlow mode =0 Dequeue(R_CHAN);
flow_chk |mode=1v mode=2 Balance(R_CHAN(front). LOB,HOLD,
R_CHAN(front).LW,, LW,
NOU);

HOLD:=R_CHAN(front).LOB;

LW, :=R_CHAN(front).LW;

buffer := R_CHAN(front).buffer_avail.

Update_outbuf (OUTBUF, LW));

no_err mode = | Dequeue (R_CHAN);

err_chk mode =2 Update LUP (LUP, HOLD, LW,,
R_CHAN(front).k);

Dequeue (R_CHAN),

Figure 5: T2 State Diagram and Predicate-Action Table

12

c. Process T3
T3 starts when T_active is set to TRUE by machine T2 and executes its
function each time a clock-tick occurs. Details of implementing the clock-tick are left to

the next chapter. State diagram and Predicate Action Table of T3 are shown in Figure 6.

start
Transition Predicate Action

start [_active=1 null

clock clock_tick? T _active =T 1nc (scount)

no_data sent=F nc (count)

delay count < k A scount < Lim null

timeout count =k v scount >= Lim Enqueue (T _state,I_CHAN);
k:= min (2*k, klim)

data sent =1 Enqueue (T_state, T_CHAN);
k=1

no_disc scount < Lim sent:= F; count:= 0

disc scount = Lim Disconnect:= T

confirm T active =F null

fimsh T active =F null

Figure 6: T3 State Diagram and Predicate-Action Table

The main function of process T3 is to transmit periodically the transmitter
control packets. In addition, and if no receiver control packets are received for a
predetermined amount of time, it initializes an abnormal connection termination. For this
purpose,it increments Scount every time it transmits a control packet, and T2 sets this
variable to 0 every time it receives a receiver control packet. If Scount ever reaches a
predetermined value Lim, then T3 sets the variable Disconnect to TRUE which causes T2
to send a “disc” packet and sets T_active and transmit to FALSE.

T3 transmits control packets depending on the global variable Sent, which
is set to TRUE by process T1 after every data packet transmission.

If Sent is TRUE, a control packet is sent and the variable Sent is reset to
FALSE. If Sent is FALSE, then k is recalculated ﬁsing the formula k=MIN (2*k, k*Lim)

and control packet transmission is delayed for k*Tin seconds, where Tin is the period of the

13

clock-tick mechanism. If meanwhile Sent becomes TRUE, then T3 stops waiting and

transmits the packet and resets k to 1.

d. Process T4

T4 is the first process invoked and is the interface between SNR protocol
and the upper layer (the host). When it is invoked, it sets Transmit to TRUE, causing
process T2 to initiate the connection. The result of this phase is known through the global
variables T_active, Fail and Accept. If Fail is TRUE or Accept is FALSE,T4 sets Transmit
to FALSE and the protocol is stopped, and the host is notified of the failure, otherwise the

connection is established and data are transmitted between the two hosts. State diagram and

Predicate Action Table of T4 are shown in Figure 7.

Transition

Predicate

Action

signal

transmission signal from the host

Transmit :=T; Accept :=T

fail

Fail=T

Transmit := F;
notify host of failure to connect;

unaccept Accept=F notify host of unacceptable connection
<3> start T_active=T null
3 write not (Full (OUTBUF)) A not(eot) A| Enqueue (data stream from the host,
T _active=T OUTBUF)
. finish eot A T_active=T Transmit :=F
31:[: confirm T_active=F notify host of completion
disc T_active=F notify host of disconnect

Figure 7: T4 State Diagram and Predicate-Action Table

2. Receiver Processes

a. Process R1

R1 removes the received data packets from T_CHAN and either inserts
them into the buffer INBUF (mode 1 or 2) or passes them to the host directly (mode 0). It

starts its function when R_active is set to TRUE by machine R2. State diagram and

Predicate Action Table are shown in Figure 8.

14

Transition Predicate Action

start K active =1 null

finish R_active = F A Empty (INBUF) [null

receive T_CHAN (front) = DATA null

no_buf mode =0 Pass'T_CHAN(front) fo the host;
Dequeue (T_CHAN)

buffer mode = 1 vmode =2 Order_insert(T_CHAN(front), INBUF,

RECEIVE, LW,, duplicate);
if not duplicate then
received = T;
Process_packet (T_CHAN(front).seq, RECEIVE,
AREC,Buffer_avail, LW, UW_LOB);
end if;
Dequeue (T_CHAN);

Figure 8: R1 State Diagram and Predicate-Action Table

b. Process R2

Process R2 establishes the connection with the transmitter and thereafter
receives and processes the transmitter control packets. It starts its function upon reception
of a Conn_req message. Process R2 is the receiver counterpart of process T2. State diagram

and Predicate Action Table are shown in Figure 9.

c. Process R3

State diagram and Predicate Action Table of process R3 are shown in Figure
10. It has exactly the same structure and function as the process T3: it transmits the receiver
control packets periodically to the transmitter through R_CHAN and initiates an abnormal
connection if no transmitter control packets are received for a predetermined amount of

time.

15

Transition Predicate Action
ack T_CHAN (front) = Conn_Req Evaluate (Conn_req);
Dequeue (T_CHAN);
Enqueue (Conn_ack, R_CHAN);
clock clock_tick N Empty (T_CHAN) nc (delay)
ok delay < reset Enqueue (Conn_ack, R_CHAN);
timeout delay = reset null
start T_CHAN(front) = Conn_conf v R active:=T,
T_CHAN(front) =T state v if T_CHAN(front) = Conn_conf then
T_CHAN(front) = Data Dequeue(T_CHAN);
\E/ update end if;
finish Disconnect =T v T_CHAN(front)=Disc |R_active := F;
update T_CHAN(ront) =T state & scount := 0;
T_CHAN(front).seq > high high := T_CHAN(front).seq;
Dequeue (T_CHAN),
discard (T_CHAN(front) = Conn_conf v Dequeue (I_CHAN);
T_CHAN(front) = Conn_req) v
(T_CHAN(front) =T state *
T_CHAN(front).seq <= high))
lost_ack T_CHAN(front) = Conn_req Dequeue T_CHAN);
Enqueue (Conn_ack, R_CHAN)

Figure 9: R2 State Diagram and Predicate-Action Table

Transition Predicate Action

start R_active=] null

clock clock_tick A R_active=T nc(scount)

no_data received=t nc(count)

delay count<k " scount<Lim null

timeout count=k v scount>=Lim enqueue(R_state, R_CHAN);
k:=min(2*k, klim)

data received=T enqueue(R_state, R_CHAN);
k:=1

no_disc scount<Lim recerved:=lv; count:=0

disc scount=Lim